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1. INTRODUCTION

The purpose of the present work is to re-consider a well-

known resistive MHD instability by considering the effect of a

more general form of Ohm ’s Law. Specifically , we treat the m o ,

finite wavelength tearing mode in cylindrica l geometry for a

reversed field plasma equilibrium t’pical of those which are

produced in reverse—bias theta pinch experimen~s~ The motiva tion

for the present study stems from early experiments which showed

a curious and unexplained absence of an expected tearing mode?

Reverse bias theta pinch experiments generally produce a closed

field configuration with reverse trapped magnetic flux; this

occurs due to magnetic line reconnection at the cold ends of the

pinch coil where the resistivity is high. The formation of the

closed region is also associated with a strong axial contraction

as the plasma attempts to find its equilibrium . The result is

an elongated (length to width ratio > 10) reversed-field plasma

with a bounding closed separatrix, whi ch accor ding to the sim-

ples t classical pic ture shou ld be fur ther susc eptable to tear ing

modes , m—o and ~ 0, which would tend to break the column

into a number of cells each having reversed trapped flux. The

number and size of the cells as predicted by the simple linear

theory varies from experiment to experiment since the linear

dispersion rel ation depends sensi tively on plasma prof iles.

The cla ssical tearing mnde theory due t~ Fnrth, Kilieen ~nd

Rosenblut~ carried ou t ori ginall y in s lab geometry yiel ds for
7

cylindrical geometry the prediction that most of the experimentally
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produced reversed field theta pinch plasmas should break up into

reversed field cells. Experimental results of Eberhagen and

Grossman~ and more recently by Linfor ~ show that the expec ted

• tearing mode does not occur and the plasmas in question exist for

some tens of linear growth times. Instead of the expected tear-

• ing a pronounced rotation of the plasma column is observed; this

rotation increases with time until the rotational frequency

reaches a critical value at which time the plasma goes catastrophi-

cally unstable to an m=2 mode. In an attempt to explain the ab-

sence of the tearing modes Kalek
7 
simulated the plasma behaviour

wi th a linearize d ini tial value MMD code assumin g the p lasma

column to be infinitely long with no longitudinal spatial dependence.

Kalek’ s model originally contained the resistive MMD equations of

motion linearized about a rigidly rotating plasma equilibrium;

results from the numerical code showed that the inclusion of ro-

tation predicted even larger growth rates than for the static

equilibrium case. The addition of the Hall effect into the Ohm ’s

Law yielded results which were not inconsistent with the experi-

mental results, namely the growth rates as calculated were at

least an order of magnitude lower than what the FKR theory would

predict; this statement requires qualification in that the rele—

vant part of the FKR cylindrical tearing mode dispersion relation

is distorted in a manner to suppress the growth rate. The long

wavelength (ka < 1) part of the dispersion relation is affected

and a preferred direction of rotation is indicated for a stabi-

liming influence. The direction of the ion diamagnetic drift -
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velocity is preferred for stability and rotation in the opposite

direction results in enhanced instability. Kalek’s numerical

results lend strong support to a beneficial interplay between

• the effects of rotation and Hall current in the suppression of

tearing mode growth rates. The calculation described in the pre-

sent paper attempts to analytically investigate the m—o, k5 ~ 0

tearing mode in reversed field plasmas and attempts to explain

the numerical resu!ts of Kalek. Our results are consistent ‘.~ith

Kalek ’s and we find a stabilizing influence of rotation combined

with Hall effect; however, we find that the results are very sen-

sitive to profiles, wall position and plasma parameters such as

density, temperature and rotation frequency. The specific cal-

culation presented in the present paper deals with plasma profiles

which are representative of those which are produced in reversed

field theta pinch experiments.

It should be mentioned that the use of Ohm ’s Law with a

Hall term has also been used to model the effect of finite particle

effects in treating tearing modes since the Hal]. term is associ-

ated with a coefficient which is proportional to the ion gy-

ration frequency! In such a case overstable modes can be found.

In the problem treated here the m—0 mode does not admit overstable

solutior~s; this is not explicitly pointed out in the text but fol-

lows from ~‘iimple energy arguments.

The paper is organized into ‘4 r sectthns. The governing

equations are presented in sections 2 and 3. The governing equa-

tions are non—dirnensjonaljzed in section 4. Solutions of the

- ~~~~~~~~~~~~~
_______________ _______________________________________ — — .~-.—--—-—- -—--~ ~~~~ —‘ —~.---—-..-—-.—.~~~~~~~ --- —~---•—
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governing equations in the resistive boundary layer are dis-

cussed in sections 5 kind 6. Solutions outside the resistive

layer are discussed in section 7 and matching across the

- — boundary layer is discussed in section 8. The tearing mode

ordering with a small parameter is discussed in section 9 and
- 

10. Sections 1]. through 14 discuss the computation of growth

rates for specific equilibria. A final section presents the

conclusions of the computations discussed here.
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2. The Model

We consider a straight cylindrical plasma column

• whose equilibrium profiles are considered to have

variation only in the radial direction. The plasma is

considered incompressible and has a density profile,

that extends to a perfectly conducting wall. The

equilibrium magnetic field, p0(r) has both longitudinal

and azimuthal components. Finally , the column is sub-

jected to a rotation with rotational frequency ~ (r).

To study this system we employ the following

mathematical model:

+ V • (pv )  = 0 (1)

3v
p + pv~Vv = —Vp + (2)

~~~+ VxE 0 (3)

J III L VX B (4)U0

(5)

V•v = 0 (6)

(7)

—~~-~~~~~~~
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where v is the plasma velocity , ~ the magnetic

field, p the plasma pressure, .7 the current density ,

~ the electric field and n. e are resistivity and Hall

current parameters respectively which are taken to be

constant. The mathematical model specified by Equations

(1) - (7) differs from Ideal MMD only through Ohm ’s

Law which includes the effect of finite reaistivity and

the Hall effect. Our aim in this report is to study

the time behavior of small perturbations about an

equilibrium specified by v0(r) , 80(r), p0(r) and p0(r).

The perturbed velocity field , magnetic field , density ,

pressure, current density and electric field are repre-

sented by u, b, 6p, ~p, j and ~E respectively .
The linearized version of equations of (1) - (7)

are:

6~ + V• (~5pv0) + V .(p0u) 
= 0 (la)

-E p0 ~ = _Vp* + ~ x B
0 + J0xb 

- p0 ~~~~~ (2a)

— 

~~ 
v .V~i —S py0•Vv + ~

_V (B•b)

a
~~~b =— V x 6E  (3a )

r
(4a)U0

- Yo4~ 
+ ,

~~~~ 
+ 

~~~ 
+ 
~o
.* - 

~~~~~ 
(5a)
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• 0 (6a)

— 0 Cia)

The starting set of equations for the computation

f can be obtained from system Cia) - (7a) by Fourier

transforming the perturbed quantities in the ignorable

e , z directions and time , t. As mentioned , we consider

only the mode in — 0, k finite where m is the azimuthal

wave number and k is the axial wave number. Thus,

• ~(r) exp(i[wt 
- kz])

u • ~ (r) exp(i~~t - kz])

etc.

For ease of notation we will omit superscripts from

the perturbed transformed variables.

After transforming equations (Ia) — (7~) and rear-

ranging we arrive at the following sixth order system of

ordinary differential equations :

2 ~ . d (r
~r ) f d 1 d(rbr) 2 .~2 

dp0
dr - 

~~~ dr )-  -k p0(r~. 
—

~~~~~~~

0

2 2 1 d2f l d f—w + 4~ + �r~ ~~~~ 
+ ~~~~~ —i + -

— 
2k 2C~ 

~~~ )b — (2 k f  ~ + f.!! k2) bw 0, 2  r • r 6 (8)
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~~ (~ ~~~ 
(rbr)) = - 

~‘~ r 
+ b0

2
- + (j ~~~+ L!i +~~~~~ k J  )b (9)• U0 p0 o,z r

£f d ~l d  b)) nkd l d  ( b ) )dr ~ dr 
(r r U0 ~~ dr r

= -k c + 
k2 

- 
jf2 - 

+ ick~ ~~~ + ...L. ~~~~~ b110 W1.IoPo 1J 0 rp~ ~~2 dr 6

+ i(- + ~~~~~ ~~~~~~

— kw(J0~~ 
- 

or e] 
+ 2kf~2 + krf ~~ ) 

~r

+( (r 
~~ ~~~~ 

~~ ) + !S.~L] + kr - ~~~~ b (10)

where f = kB0,~~. Futherxnore , we have considered the equilib-

rium velocity field to be a rotation, V
0 

= r~~( r ) O  where 0

is a unit vector in the azimuthal direction.

r

_ _ _ _ _ _  _ _ _ _  
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3. The Equilibrium

We consider an equilibrium magnetic field profile

with vanishing B0,5 on a cylindrical surface, r — r0, in the

plasma , i.e ,a reversed field , while the component, 
~0’0

• of the field is taken to be finite on r • r0.

Since the plasma is taken to be incompressible, we

may impose an arbitrary density profile. Finally , the

equilibrium flow is taken to be a rotation with variation

in the radial direction, and no flow in the axial direction.

The above equilibrium may be summarized as:

8o,e ~ + 3c ,~ 
B0,~~

(Z
0) — 0

v0(r) — r~?(r) 0.

p
0(r) arbitrary .

4• Dirnensionali zation:

We dimensiona]ize with respect to the equilibrium

values at the neutral surface r — r0 as follows:

- 

w0a
2p0 ~ 

- ~~~ Cr0)
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- - — —  - - df
— 

p0(r) — d~ _____— p~ (r0) 
‘ ad~jr~) 

‘ ai — 

~~~r0)

d2f

_______  

r—r0 — r
—i (r0) — a df — — a , r —
dr

dpa 0 — p,6
— - ~~ — —~~~~~~~ , B0(r~ ) — 

a2 df ,
dr ’ o

— o,z — 1W
— A f  ‘S a~~ (r0) o

2~~ d~ 2ai~ d~— — , — ka

wo — 

(p
0

11
0

) ”2 
~~~~~~ (r0) ‘ ~~ a~ ~~(r0)

i~b8q8 — 2dfa a.~
(r0)

With these dimensionalizations:

I C r )  •r + 1 
~
2 + ~~~~~~~

and,

O ,Z 
— ct 2 r +
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We rewrite equations (8) - (10) in dimensionless

form for a layer centered about r0 that is sufficiently

small to neglect variations in the equilibrium quantities .

This layer will be referred to as the boundary layer,

and the equations governing the behavior of the resistive

layer will be known as the resistive boundary layer equations

or RLE. To leading order in r and omitting the super-

scripts on the dimensionless quantities, the RLE are:

~2 
:~~~~~~~ 

— 
~ + (p 2(1 - 

r D 8 + + k2y2)~

1 2 ~~ 2iB8
— k t-~~1 

- —-
~~~~~

-
~~~~~~~~ + (:;;—• - 

~~ )q 0 ( 8a)

d2q~ 2
~ dT~ 

= t
~r 

+ ~ rq 0 + (y+k ~ + it~ 2t)q~ (9a)

d2q0 d2q~ 2
~ dr 2 dr 2 = ~ + ~k

2 + + iEB0[~ — D5])q9 
-•

r dQ 2iB0+ (ED5T(1+cz2B6] + ~~t (1 + ~~~~~~ + - 

r0~~~r

— + D5 + k2T] — ~~~~~~~~ . t 2 
+ ~~ ~~ )q~ (lOa )

I- -~ — — -
~~~ - - -

~~~~~~~
---
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5. Analysis of the RLE

Scaling:

- - -  We wish to study the interesting behavior governed

by the RLE in the limit of small resistivity and Hall

parameter n and c. Following the suggestion of reference

[9), we adopt the following scaling based on a resistive

layer thickness of the order of the skin depth with respect

to the diffusion time scale, i.e., yr 2 - n where t - y .

y $ S  , r = ~~x , n = $ 3
~~ c z = 0 ( l)

C =

... , q~~= $ ~j~ + ...

= + • 0 •

Also denote:

r 2Bo d ~ 0
2~~dr ’ —

where the superscripted variables are considered to be

0(1) quantities while • is a small scale factor. The scaling

of the Mall parameter and angular velocity were chosen so

that term s wi th c and ~ would neither dominate nor disappear

from the scaled equations in thc 1owc~t ordcr.

__________________ 
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Finally, we again omit the superscripts in writing the

scaled equations:

- - S2 ~~~~~~~~~~ + X jJ - fl 2(l - 
~~~ D5 + P )~ + (~i~ - i6)~ (11)

fl ~~~~~~~~~ 
— —S X ~ + exy + S~i (1 2)

~ 
d2~ — £~_4 — (S + + i c S ( 1  — 

r0D5

+ (x~ (l + P 1  — i~5S)~ 
— P~~~ (13)

Making use of (12), equations (11) and (13) can be

rewritten:

~2 ~~~~~ - + - 

r0D5 
+ Pj) 

~ + (~~~~ 
-

— i~f lc  — .
~~~~~~ 

q~ (Ha )

d 2 r-~ — (SR + ~—) + ~~
— x + ic~5( l  — —~~~ D~ flCdx

+ (x~)[l+PJ - i6s — LL. S)~ + (~~~~~~ 
- P~])~

, . (l3a)

Equations (11) - ( 13) show that in the presence of

azimuthal components , D~ , of the equilibrium magnetic field ,

ovir stab le modes are possible due to the imaginary terms

_____________________________ - __________________ ~~~~~~~~~~~~~~~~~~~~~~ 
________________
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in the equations. For this analysis we suppress these

terms by considering only long wavelength modes with

sufficiently small k which results in the elimination

of 6 and 
~2 

from equations (11) - (13) to leading

order.

— — 
— _______.•st_ S --
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6. Asymptotic Behavior of RLE:

The system (h a), (12), (13a) constitutes a sixth

order homogeneous linear differential equation with an

irregular singularity at x — ~~. The system may be

rewritten in a standard form for irregular perturbation

analysis (see reference (10]):

du
— x A ( x )  u

which has a set of solutions of the form:

+ ...
u — c e  x z(x)

where c is a constant matrix and X , D are diagonal

matrices.

The elements of ~ determine the exponen tial na ture

of the asymptotic solution to the inner equations. These

elements, X i, are the eigenvalues of the matrix,

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

~~~— - -i---
flQ flQ

2 0 0 0 0

2
_ ! 2 (i... + L... ) 0 0 0 0n TIQ ‘~.

0 0 0 0 0 0

_ _ _ _ _ _  —--.- ___________-
— _S~~~~~~~~~~~ — ~— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. ~~~~~~~ a
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Thus,

A — 0 ,01,2

2 1/2

)1/2 
(~ ± (~ + ~—)

2 1/2
A 5,6 

— 

~~~~~~ ~ ± (1 +

vhere r 2 a !—! . -

At this point it is not clear whether

k 3 ,4 ,5 ,6  have pure or oscillating exponential growth

or decay, or whether they have pure oscillatory be-

havior as x -‘ ~~~~. In fact, we can show that only if ,

S 2 ~~~~~~~~~a

for a an arbitrary real number, can Ak be pure

imaginary in which case

A —

Thus, all these solutions either decay or grow

exponentially as x in the class of solutions with

positive growth rates, i.e., Re S > 0
Finally we consider the two algebraic equations

corresponding to A 1 and A 2. To determine the asymptotic

behavior of these solutions as x -‘ ~~~~, we consider the

~~~~~~~~~~~~~~~~~~~~ ~~~~~~_-~~~~~~~~~ ~~~~~~~~~~
-
~~~~~~~~~~~~ --
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dominant terms from equations (lla) and (13a) , as

x

n n

- + (~~ + ~—)y 
..!! ~

p
Solving to leading order in x for ~ and y yields:

(14)

• 
y ::~~~~~ 4, • (15)

Thus,

(16)

Also from (12),

d2 (~ç~ ) 
— 

~ 
d2 (~.1) 

( 17)
dx 2 dx 2 S

Replacing (14) and (15) in (11) and noting that

x (xc) — ~~ (x 2 
~~~

I

-- T T T~ ~ —- - -  - ~~~~::::~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
-



j .~~~ 

—

—18—

yields, to leading order as x •

~~ (x~ ~~~) = — ~~ ~
‘
~O D~ — P)~ (18)

which has the solutions,

~~~~~~ ,~~
-1—h

where ~ — 
1 

+ - 
2 r D

~ - P))~~~
2 in order to arrive

at (16) we made use of the fact that in view of (14),

y - x~1 1  
~
—2-h

In summary , the asymptotic solutions to system

(1])- (13) take the form, as x

- 1/2
1 

~~~ c1+~~
2
) ) X }

2 1/2 2
— exp ‘~ l’2 ~~ ± (1 + i—) )

(OS )

h —h-i
— x , x

• wherer=~~~~~,h = _ f +~~~ ( l_ f l 2(~2D5
_ p ))L’2

- - —— - —5-  
- 

- --—

.

~ 

. ~~~~~~~~~~~~~
1L -~~~~ -5.- -~~~~ -- -~ 

-
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7. Solutions Outside the Resistive Layer:

The behavior of the plasma outside a narrow region

surrounding the neutral surface is governed to leading

order by ideal MMD, i.e., c and r~ can be taken to be zero.

In terms of the same dimensjommahjzations as the resistive

layer equations, the outer equations reduce, near marginal

stability, i.e. ‘V ~ 0, to the following second order differ-

ential equation:

~
j
~~

_- 
~~
(r
~r

))_f2k2
~r 

— — —
~~~ 

rQ2(D~—~ ~~~~ 
( 19)

Near r0 equations (11)— (13) reduce asymptotically to:

d 2 d~ 2 r D 5( t  
~~~~~ 

Q C — 

~~ ‘r (20)

which has solutions,

(21)

where h — — + Cl - ~~~
2

~~~~~~0
Ds - P ) ) 1”2 . (2 1a)

_ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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For the purposes of numerical integration , it is con-
• C

venj ent to set W — which transforms (19) to,

+ P(x) W2 + q(x) W — 1 (22)

W(0) — W( l )  • 0

where,

and ,

• q( x) - (2 df~dx +

From (22) and the asymptotic expressions f~~~t ,  1,

we find that the criteria for entering the asymptotic

regime governed by (20) is that

M ~1 < < 1 .
XQD5~

2

In this formula, the value of r such that M— 01 may b~
taken as a measure of the thickness of the boundary layer , i.e.,

• ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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x2D~~
2

tb &  — .01 O S  
(23)

-— 

We note that according to (23) the boundary layer

thickens as the plasma rotates faster.

8. Matching Inner and Outer Solutions:

In order to match the outer solutions, the two

exponentially growing solutions to the inner equations must

be set equal to zero, leaving the two algebraic solutions

f or matching.

The condition that the algebraic inner solutions match

the outer ideal MHD solutions can be expressed as:

outer inner
u r n  Cr (r) u r n  F (x )  (24 )

T~ 0 x-~~

From (18) and (19) it is clear that the inner solutions

can be matched asymptotically to the outer solutions in the

sense of (24).

We will be investigating a class of resistive eigenmodes

called tearing modes, that are sensitive to the matching

• conditions between the inner and outer regions. We subdivide

the plasma radius into three regions. Region I is the outer

- region closest to the magnetic axis. Generally, when treat—

ing boundary layers, the boundary layer is called the inner

region, and thc rczt ~z c~~11ed the cuter region. ilere, how-

ever, we have two outer regions, one of which is in some

-.~ •—~-__ ---~-•- _________________________________________________________

~~~~~~~~~_ - ___S._ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~
-- - -

~~
-- .

~~ 
---- ---

~~
p• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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sense inside the boundary layer. We can just call it region

I. Region II is then the inner, resistive boundary layer,

and region III the other outer region.

From Equation (21) we have seen that the solution in

Region I near the boundary layer approaches the form:

Cr, i A1 It I h 
+ B11t 1

_l_h 
(25)

Likewise in Region III , 
-

Cr,111 A111k1” + a111 I t t

l h  (26)

Similarly in Region II ,

AII ,L Ix I
h 

+ BI I ,L Ix I
l h  as x + -a

• 
AII ,R I x I h 

+ BII ,R Ix I
l h  as x ~ a

The matching condition, (24) can be expressed as,

A 2h+ 1 AI (1 II,L 27
I II,L

and,

A111 1 2h+1

III II,R

• — . -—-—_ •~-~~ - - .- ._~=_•~~~:~•~ ~~~~~~~~~~~~~~~~~~~~~~~~ 
— - — ——•

~
—•—-

~~~~~
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for 2h+l — (1. — c~
2(rD 5 

- ~))~~‘2 ‘ 0 and where • is the

small scale factor.

We expect for most cases that A1 and A111 will be
B B111

finite numbers. Thus to obtain matching , the growth

rate must be adjusted in the resistive layer so that

0. The exceptional case occurs when B
~ 

vanishes.

According to Newcomb ’s stability criterion [11), this

is the condition for marginal ideal stability . It is not

surprising that a system that is close to being unstable

in the ideal theory will have a strongly modified resistive

instability.

These matching constants can be calculated numem ically

from the outer layer equations as the limit

d l+h ..A1 A111 lim — —4h—2 a~ 
(x ~)

— 
a 

(+x ) ( 29)
• I III d —h 5

~~~(x ~)

— u r n  ~~ (x~~)
x-4a d 1h ,

- - -—~~~~~ - - S —  ‘~~~~- -— ~~~~~~~~~~- - ~~~~~~~
- _

~~~~~~~~~~S - - -  ,- ,- ~~~~~~- _— -~~~~~~~~~~~~—~~-
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In terms of W, (29)can be rewritten,

him — 1~~
—2h—l h+l +

C
-h +

(30a)

- 1
~~~ -2h-l h+1 -

The quantity matched to the inner layer is,

A A
~ _ III (30b)B111 &

~

Our objective in this report is to gain some infor-

mation about the eigenvaiue problem by purely analytic

- means. To do this, we consider the growth rate,

S, and h - 0. It will prove convenient to match the

r—component of the perturbed magnetic field at the edge

of the resistive layer rather than the plasma displacements ,

in which case the asymptotic solutions are

ast~~~ 0

+ ~~~~~~~~ , as t + 0
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and

81I ,L + AIIL X as x+-a

BII ,R + A II ,R x a s x + a

As in (27)  and (28) the matching conditions become,

1 AII,L 1 ~II,R = 0 (1) . (30)
II,L II ,R

We have seen that the behavior of the exponential

solutions of the RLE are

C - exp {± kx2
1 } for k constan t ,

2(~S)

as x ~~~~~~ Thus as S becomes small , we must consider the

- length scale to become small as S~~
’4, otherwise the

exponential solutions would grow infinitely rapidly making

the equations badly posed. That is, there is an inner

layer of significant behavior that is even thinner than the

resistive skin depth, by another factor of S1’4.

We find the interesting behavior within this new scaling

by expanding the parameters and variables of equations

(1]) — (~~3) in powers of S as follows:

_ _  _ _  - I

L~  
•

- - - -S  ~~~~~~~~~~~~~~~~~~ 
-
~~~~~~~~~~~~~~ - ~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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C C0 +

- 
a + ~~~~ ~~~ + ...

x 5l/4~~~~, C = ~~~~~72
C , Q — S ~~~~~

Equations (11) — (13) reduce in the zero-th order to:

d2
~

~ 2~~~~° 
(31a)

dx

d2C —2 —2 r D
~ 

— — 2  —

___  = (
~~ 

- 

~ C ~ -1-P1)ç~ + - x ) -

• ~ 
= ~2 (14.!]~ + (~~~(l+P ] - ¶-C0 + (~ 

-

In the first order :

TI = —x F + cx~ + 4’ ( 31)
0 0 0

Thus

(0)
*0 B11 + A 11 x

~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ T-~~ 

-JI iL~~~ TT~L
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• But since A11 : 0 for matching , we are justi f ied in
(0)

setting A11 — 0 in the zeroth order and accounting for

the x dependence in the next order. In fact, from (31),

and in view of (14) and (15), we have

2 0 as x . ±
dx -

which has solutions, -

(1) — —AII ,L x as x*-a

•
1 

-

(1)
AII , R x as x a

where the constant solution has been incorporated in the

zeroth order so~ution. Thus the total 4’ solution is,

— 

~~~ 
(I)_ 1/4 (0)-

- 
*( x) s A11 x + S B11

• And since,

l ~~~~~~~~~~~~~
-

S dx

making use of (25), (26) and (3 1) , we arrive at the dis-

persion relation,

— (32)

_ _ _ _ _ _ _ _  
I

- . .- - .- -  5-

~~-I~~~-- ~~~~~
—-— —--~_~~5-.- -—---.- -5 . -~~~~~- - —-—- — -
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where ,

A A
A — 

III 
— (33)

I

and ,

-x
1 ~ — u r n  ~~

(x)
~ dx

(X
~
) s5’4 u r n  I ~~~~~~~~~~ + 

— -

$ X+a B ~1~’4 B • X~ )-~ 
Xr1~0 

C X

+ B3dx (34)

where we have set 8 ~~~~~~

Thus the condition that ~~~
‘ — 0( 1)  requires that

— s5
~
’4 (35)

- -—-5- — —5-.- -

.5 j —- .—.- •-- ------ •- -—- .—- -—-  — . ,•—- -_- --•--—-— -—— - —-~.L
__ _.. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~
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9. The Tearing Mode Equations:

From the original scalings of section 5, and equation

(34), the tearing mode scalings can be rewritten in terms

— . ~~~ - of the scale factor 0 as

= , ~ = O~ Q , ~~~~~~~~~
= e~~

= o 2
4’~ + 0

~~4’~ 
+

C = C ... (36)

q9 = ~~~~ +

--

r cD
and letting P ~~ ‘tnd q = —~~~~~~ . (36a)

The following tearing mode equations result from scaling

the basic equations (11) — ( 13) according to (36),
r D

• omitting superscripts and considering 
~
p - 

0 S
1 << ~

____ 
A 2 (1 - 

r D ~ + P1 + 
~~~~ 

Co + ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

:°
+ 2 

— 

~—)8 (37)
Q TIQ

—_-— -. — -. ___________________________________



____  - (
~~~ 

(1 + p+q ) - 
~~2 Q)C + (~~~ 

+ £
2X)~~ 

~~,

- + (— a~~—~~--] — ftip+ q j + £~2)8 (38 )

d2*j-~
. —~~~~~ C0~~~~~~~~c0

+
~~~~8 (39 )

where the superscripts have been omitted from the scaled

variables.

We study the asymptotics of system (37) - (39) by

expanding the independent variables as follows:

C1 C 2
C — + —~~~ + • • •  (40)

x

(41)
x

Replacing these expansions in (37) — (39), we obtain

• the result that

~l
0 ,C 1 6 ,

(42)

— —B QA ~ C 2 — E~~~~ (~~~~~~ 
— 

~~~ 
— c A I B

and ,
2

— 8( 1 + 
A r0D5 in x •~• ...1 + ~C

J. 
+ 8(ct1— ~~

—) in x]x +.

where ~ and c1 are chosen to match the outer solution.
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10. Analysis of the Tearing Mode Equations:

In order to study system (37) — (39) analytically

we are motivated by equations (42) to make the following

change of variables:

~~~~~~~~~~~~~~~~~~~ 1 4(Qn)

Q~ /2~~ -

TI

~~~~~~~~~~~~~~~~~~~ 

l/4~~(Qn )

We also define the following parameters,

r2 a~~~~

(43)

and q — P + q

With these substitutions (37) - (39) can be
r D

rewritten, assuming tha t 0 S 
- < <  1:

2— r D
— — 

0 S) + ~
2
i~ + ~ [Xz - rz2J~ +

dz

1 
_____— j-—) ’
~5~ 4 — z  (44) 

— -- - - r~~~- .- -- - 
- 

-- - -— - - - - - - -  - .. ~~~~~~~~~~~~~~~~~~~ .—
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~—j w 
~ (zX(l + ~

) — rz 2)~ + z
2(l +

dz

+ (.— — 

3/4 (~~ — ) — q (45)
A Q A o

2— 3/2

• ci — z~ + rX~~ 
(46)

d

In the text that follows we will simplify the

computation by taking a1 -

The dispersion relation (32) - (34) can also be rewritten

in terms of these substitutions:

where,

(z
F lint 

J 
(1 — ZC + rAC)dz 147

- - z+~• —z

I

• 

. 

I ~~~~~ 

— ~~ CX)- (-x)) A.

Thus, the dispersion relation is:

• A ’ — A  (48)

-5  —- -~5-— 5-- -5 -- -~~~~
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and making use of (36) we have :

— ~3/5 (~~ ) 4/5 (49)

where the dimensionless quantities y and n have been used

in place of the scaled variables Q and r~ , and F depends

on the paranteters in equations (44) - (46), namely,

~~~~~ and D3.

A Special Case: -

Our objective in this section is to find a special

class of analytic solutions to the inner layer equa tions

(44) and (45), and use these solutions to evaluate the

dispersion relation (48) explicitly .

The case we consider is characterized by,

r D
c< 1, r << 1, P 0, q = - 1, X — 0(1)

This corresponds to a Theta pinch equilibrium with

rigid body rotation and density gradient opposite in

sign to the angular velocity .

I A .  - . . .- --S -5 -- - 5-- - - 
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From (44) we see that only the odd part of ~

and C contribute to the dispersion relation. Furthermore,

in the limit of small Q, the second term in (44) can

• be treated as a perturbation, thus only the odd part

of ~ must be determined in order to derive the 
dispersion

relktion. But, referring to (43) and (44), and using

the r.sult of the asymptotics summarized in (14) and (15),

all terms involving r may be treated as pertubations and

neglected to leading order. Thus (44) — (46) reduces to:

5_ z 2
~~ _ x 2

~~~ _ z x 2
~~~ _ z  (50)

a~i_ 
~~~~~~~~ (51)

(flQ)h/4 
j
~ 

~~~~~~~~~~~~ (1 — z~ ) dz (52)

where we denote the value of X corresponding to the

special case q — — l by K0. We let,

_ ~
-z

~ /2 
~ 
b2k H2k (z) 

. 

(
~~~

)

— 
_22,2 I a2k+l H2k+j (z) , (54)

-5-.- _ _- - -.
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and make use of the identities,

2 H (s)
~~~~~~~~~~~~~~ 2k

- 
. 22kr (k+l)

— £ 
22/2 ~2k+l~~~

2 r (k+l)

Solving for ~ we f ind,

a _ _ _ _ _ _ _ _ _ _  

(2 + + ~-~~n
2k+l 

22k4r(l+l) (4k+3 +

Replacing ~ in (51), and using the orthogonality

relations for Hermite polynomials yields,

—A —  
~~~~~~~~~~~ 

P ( A )
2n ” °

where ,

r ( °) r ( 1)
F(A ) — —4(1 + X 2 

—2 + 2X2 ~0 5+A O F ( 3 )

• r 4 )

Growth rates can be obtained by solving the dispersion

relation, A ’ — A , for the growth rate as given by (49)

where the quantity A ’ is determined by integrating the ideal

equations of motion forward from r — 0 and backward from

r — r
~~
(r
~, — wail position) and then forming the logarithmic

derivative as indicated in Eq. (30a). From (49) we notice

- ~~~~~~~~~~~~~~~ n~±~~~~~~~~~~~_ ~ _ ~~~~~~_.. - . T~~ -_- -._-_ - .-~~~~ ._. _________
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that the stability criterion is A ’ > 0 , that is, for

positive values of A ’ the plasma is unstable and positive

growth rates can be calculated . For A ’ < 0, which depends

only on equilibrium quantities outside the resistive

layer, the plasma is stable. We note that, in general,

the dispersion relation will have to be solved iteratively

since from (43) , X c~ 
depends on the growth rate.

11. Validation of the Analysis

The ultimate goal in this work is to compute the

stability (growth rates and stability boundaries) of

realistic linear plasma configurations to the tearing

modes considered here. Before proceeding, it is impro-

tent to validate the analysis with a specific example.

Let us consider the special case of the last section.

We will show by a numerical integration of the governing

equations in the resistive layer that i) the asymptotics

are correct and ii) the analytic solutions given by (53)

and (54) are correct. We use a technique for solving Eqs.

(so) — (52) which converts the boundary value problem

into an initial value problem (12~ . This technique has been

used successfully elsewhere in a number of resistive

boundary layer calculations [131 . We have chosen the special

case q — -l,K 2 = 0.75 and have numerically integrated the

r~sisLive lay~ x ~qudtiuns for ~ and y as a function of z 

- - - - - - -5 
...- --.
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for 0 < z < 4. Shown in figure 2 is a curve of ~ vs. z;

the crosses denote th~ solution as given by the analytic

expression (89), and the circles denote the results

-~~ 
-— from the numerical integration of Equation (50) and (51).

Figure 2 presents a similar comparison between analytic

and numerical solutions for ~ vs. z. The asymptotic

expansions for ~ and ~ for large z, i.e. ~ - l/z and

- l/z2, are borne out by both the numer ical and

analytical solutions. Further, comparison of the solu-

tions for the entire z range indicates excellent agree-

ment. We therefore believe that the numerical technique

for solving the RLE equations is satisfactory.

_ _ _ _ _ _  

-5
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• 12. Effect of Hail current on the growth rate:

From equation (49) we see that the effect of Hall

current on the growth rate is entirely contained within

the quantity F(X,q r,D3). The value of F is governed,

for the most part, by the parameters of the inner layer ,

namely, c,~ and the local values of the angular velocity,

Li, and the density gradient, D5. Thus the quantity F

maybe considered as a criteria of merit which gives us

a means of evaluating the effect of Hall current on the

growth rate ~ f the tearing mode as compared to growth

rates in the absence of Hall current. For example in

the absence of ~al1 current and the case of rigid.body

rotation, c — ~ 0 and F = F (K,0,0,D ). Thus larger

values of F in the presence of Hall current compared to

no Hall current would according to (49) tend to depress

the value of the growth rate whereas smaller values of F

would tend to have the reverse effect of enhancing the

growth of the tearing mode.

It is important, therefore, to examine the criteria

of merit, F, more closely. We will demonstrate later that

for realistic values of the parameters, F depends only on

2K and ~~. In other words F —F (i\ ,q), and the parameter r

along with the explicit dependence of F on D5 through ther D
term S in equation (44) may be ronsidered as small pertur-

batton~. This ~1~ p i ~~ic~ t~~~ ~r..~ly~ i3 o~ thc ~ nncr l~ycr ccn—

siderably and enables us to illustrate the dependence of

~~~~~~~~~
5-- - - , 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -. . . - ~~~ ~~~~~~~~~~~~~
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F on K 2 and ~ by Figure 3 • If we consider rigid body

rotations, the curve — 0 corresponds to the case of no

Hall current. From this figure it is evident that values of

> 0 result in enhanced stability to tear ing modes whereas

values of ~ < 0 result greater instability. For the case of 
I

;

eD
rigid body rotation, from (43), q = —

~~~~~. Thus rotation of
Li

the plasma in one direction relative to the value of the

density gradient at the neutral point, enhances the stability

to tearing modes while rotation in the opposite direction

results in greater instability . This result was observed by

the computer analysis of Kalek (7].

Figure 3 also shows that the effect of rotation on F,

and therefore the growth rates, is compar itively small for

the case of no Hall current due to the relative constancy

of the curve q = 0 = c compared to curves with larger values

of q.

It should also be noted that in the case of no Hall.
r —

current but a sheared velocity profile, g = —
~~~ ~~~~~ , and once
2~2~~~again Figure 3 shows that sheared velocity can also effect

the stability of tearing modes. However , this point will

not be pursued in this paper. Hereafter, we will special-

ize our analysis to rigid body rotations.

1

I
• - ---

~-- -~~~~~~~~
.

_ _ _ _ _ _ _ _ _  — - - -j -  5---~5-- --- ,~~-.
-,---- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- , - .  ~~~~~~~~~~~~
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13. Effect of the equilibrium and position of the outer wall

on the tearing mode:

The equilibrium determines the parameters of the inner

layer and thus influences the tearing modes through the

criteria of merit, F. The equilibrium also affects the

tearing modes through the outer equations via the parameter

A ’. Furthermore, since by equation (49), the value of A ’

is extremely sansitive to the position of the outer wall

surrounding the vacuum region, we see that growth rates and

thus values of the inner parameter, K2 defined by (43), are

very sensitive to the outer wall position. Thus values of

K2 determine not only the effect of rotation but also of the

position of the wall on the value of the criteria of merit,

F.

We now show how the Hal]. current rigid body rotation,

and wall position effect the growth rates of tearing modes

for a family of rigid rotor, Theta pinch equilibria. To be

exact, we will determine an overestimate of the ratio of

growth rate with Hall current to growth rate with no Hall

current, and show how these ratios are affected by angular

velocity for -fixed positions of the outer wall. The next

section is devoted to describing the equilibria.

L~~~~
. ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~
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~~~~ 
A family of equilibria:

In this section we apply the theory to a class of

reversed field, isothermal, rigid-rotor Theta pinch MMD

equilIbria. We assume that all the mass and rotational

energy i~ carried by the ions and that the family of

equilibria is parametized by the angular velocity , Li,

and characterized by a constant number of particles, ML

The equilibria are one dimensional, and although their

domain of definition is from the plasma center line, r = 0,

to r — ~~~~, the density is effectively zero for r > a; where

a is taken to be the plasma radius. Furthermore all equi-

librium quantities are constant from the plasma edge to

the wall of a vacuum region, rwD surrounding the plasma,

and the plasma column has length L and is topologically

homologous to a torus. Figure 1 illustrates this configuration.

The equilibrium is characterized by the force balance,

(p + ~.L_ B2) = Li2rp (55)

and the equation of state,

P c p  , c = ~~~ (56)mj

where K i.s Boitzmann ’s constant , I ~~S the mass of ~n ion, ~~.d

T is the plasma ion temperature.

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -- _ _ _ _ _ _ _ _
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The number of particles (ions), NL~ 
is determined by,

— 

~~~~~ 

p (r)rdr

and expressed in terms of a characteristic length, r1, as

N 2
I. — 

j~~
— P (o)rL (57)
i 

-

Wf~ Consider the following ansatz ,

p(x) p(o) sech
2
([~—) — (58)

and ,

B2 
— B~ (~

S+(1_tS) tanh ([&} — ç~)J (59)

where, all lengths are normalized to the plasma radius,

• i.e., x a I ~~~~~.

Replacing (58) and (59) in (55) and (56) and character-

izing the ratio of the thermal to the magnetic energy by,
.

8 2 c  0

80.

and the ratio of the rotationa l to the thermal energy by

~~ 2c 8

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--—- -— - -- •-

~~~~~

-• -•

~~~~

-

~~~~~~~~~~~~~~~~

--
~~~~~
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yields,

— 
26 (1—6) sech2 

~~

-- 
xp

8 — (l_6)2 sech2ç~

— ~~ 
sech~~~

p l+tanh

The equilibrium is therefore entirely specified once

the physically meaningful variables, 
~~~~~~~~ 

p (o), T, NL and Li

are specified. However, for our purposes it is more con-

venient to specify, ~~ ML, 
~c ’ 

6, and xL.

In terms of the latter set of parameters, the plasma

temperature. rigid body rotion and the neutral point, x ,

of the plasma are given by,

2 2n6 (l—’S) (j+tanh ~
N (60)m . 

~~ I.

micT

where,

c — fl2a2x~ (l-tanh ~~
) (

~j~
)

L.  _ _ _ _ _ _ _  - 
_ _ _



—44—

and,

x0 — x2• (l—tanh 
~~)l/2 (~~+1 ln (l—2y))112

The object of this study is to show the effect of the

Hall current dominated boundary layer on the growth rates,

y, of the tearing modes expressed by the dispersion relation,

= ~~~~ [ — ~ 
}
~
“
~ 

(61)
F(A ,q)

where, once again, the superscripted variables are normalized

with respect to the boundary layer quantities and the variables

q and K2 governing the inner equations are defined by (36a),

and (43). Values of the mismatch, A ’, are obtained by

integrating the outer equations as described in section 7

while F(K~q) is obtained by integrating the inner equations

as described in section 8. . Since y occurs on both sides

of the equation, (61) must be solved iteratively.

The inner variables and the normalizations for (61) are

computed as follows:

q — 
~~~~~~~~~~ ~~ci + ln (l—2y)) (62)

—1/2 — 2Li ‘63
—3/2
I

-

~~~~~~~~~

— - 
- -

~~~~~~ 

- 
-
- 

-
- --

~~~—-~~~~~~~~~~~~ ~—~~~~~~~~~~~~ -~~~~ - -~~~~~~~ —-•- 
— - - - -

• •
~~~~~ - -~~~~ - -—
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2 2i 2 6 cij0r — _________

— 

a~~L~V 
(64)

2Lia
— —v-.

where ,

k 2ira
• L

and.

— 

4a2n (~0 + ~ ln (l—2i5))(l+tanh 
~~ 

(1—26)

~~ 
mj ML

and from equation (21a)

2 1/21 i r  8 6 ,
~~~~~~~~~~~~~~ ~~~~ (65)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~ 5—---— •~~~ -—— —
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Results of tearing mode analysis:

We carried out the analysis of the above equilibrium

for the following range of parameters:

B , — 1 , = 1 , x1 = 1

C — 1.02xl0 8 
~ 

- 
MHO—KG 

, .12 mho-kg jj
0=4,rxlO

7
m weber m

Ic — 1.38x10 22 kg 
— 

m 
, m~ = 3.2x10 27kg

sec

a—  .05 m , ~~~= .05

ML — Lxl016 ions to ML = lxlO18 ions

and,

6 — .025 to 6 = .425

where 6 is the normalized angular velocity defined by (60).

As we discussed in the previous sections, the effect

of the resistive layer on the tearing modes is contained

entirely in the criteria of merit, F, whereas the outer

regions affect the tearing modes primarily through the

mismatch A ’. Finally, there is a feedback between outer

and inner regions that is particularly sensitive to the

position of the outer wall, since the position of the

outer wall directly affects A ’ and indirectly affects F

through K2. As we mentioned above. ~ depends to leading

order, on the parameters q and K 2, since for the equilibria

— — 5 — —--—-5~~~~- - •5 - ~~~~~~~ ,- 5—~~~- - - - -- - -  -—
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r D
- being considered, the parameter r < 10~~ while , accord-

ing to Table 1, varies from 0 to-.23. This range of values
r D

of ~ has been shown to have only a minor effect on the

results.

More important, as shown in Section 8, it is basic to

the tearing mode analysis that the exponent, h, defined by

equation (21a), be real. Furthermore, the asymptotic

analysis requires that h 0. Equation (65) shows that real

h is guaranteed for 6 < .5, while Table 1 inicates that

reasonable results can be expected from the asymptotic

analysis for 6 < .2. However, we carry out the analysis for

values of 6 as high as .425 and expect the results to have

qualitative validity.

Exact values of the growth rate could be carried out

using the following procedure:

_ _ _ _ _  -- 
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1. Fix the position of the outer wall at some point a~

which the equilibrium has an unstable tearing mode for the

- .  above values of the equilibrium parameters and angular velocity

corresponding to 6 — .025. As mentioned above, the criteria

for such an instability is that A ’ > 0 where A ’ is computed

from equation (30b).

2. At this low value of the angular velocity, the param-

eter K2 governing the inner equations is effectively zero.

Thus the criterion of merit, F, that characterizes the effect

of Hall current and rotation, takes a value approximately

equal to its vertex value of ~~
‘ 2.12 as shown in Figure 3.

- The normalized growth rate, y, can then be calculated from:

— 
_ 3/5 A ’1 4”5

[~;j

where 
~
j is computed from (64).

3. The angular velocity specified by 6 is increased by

a small amount keeping the particle number, ML. fixed. The

outer equations are reintegrated to obtain a new value of A ’.

- 
The value of q is determined from equation (62) and since F

depends also on K which by equation is a function of the

growth rate ~~~~, the growth rate must be determined this time

from equation (61) by iteration. This iteration is initiated

by using the value obtained for ~ from step 2 as the first

guess.

ILk
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4. Step 3 is repeated for the case of no Hall current,

i.e., C — q — 0. The values of the growth rates, are used as
- - 

- 
normalizing factors; i.e., I normalized =

Y c = O

In this way a table of normalized growth rates as a

function of angular velocity for a constant wall position

would be obtained for one family of equilibria parametized

by NL. However there is one problem which makes the im-

plementation of the above procedure difficult. The deter-

mination of A ’ requires the evaluation of (30b) at the edge of

the boundary layer. However, as shown in Table 1, the thick-

ness of the boundary layer, tb L ~~ 
as calculated by equation

(23). varies directly with angular velocity taking on values

on the order from 0 to l0~~ . However, this close to the

neutral point, where B
~~
(r0) = 0, the solutions of the outer

equations are asymptotically large and the integration routines

are no longer sufficiently accurate. It turns out that for

some parameter ranges there exists a small annulus about the

neutral point in which the plasma position is close enough

to the neutral point for a computation of A ’ to be made

yet for enough away from the neutral point to enable the

outer equations to be accurately integrated , but this is

generally not’ the case.

We can avoid this difficulty cf integrating tho outer

equations if we are willing to settle for overestimates

of the growth rates and incomplete information as to the

IL - ~~~~~~~~~~~~~~~~ 
_ — — — - - • —-~~~~~~ —-~~~~~~~~ • —--- - —-- -

~~ ~~~~~~~~~~ -- —
~~~~~ - - - --• ---
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exact position of the outer wall. We merely fix the value

of A ’ at its maximum value over the range of values on the

interval of angular velocities of interest. This corre—

iponds to some position of the outer wall. We see from

equation (61) that this value of A ’ yields an overestimate

of ~ whereas from equation (63) for K 2, overestimates of

~ yield smaller values of K 2 for the same value of g thus

from Figure 3 this results in lower values of F and once

again from equation (61). overestimates of ~~. We have

implemented this procedure and presented the results in

Figures 4—6, where I is plotted against the normalized
0

angular velocity, 6, for different but unknown, outer wall

positicns characterized by and varying directly with A ’

and for three values of the number of particles,

— io]6 , 1017, 1018. Actual values of the rigid body

angular velocity , Li, and ion temperature T are indicated

in figure 4.

Figures 4-6 validate the previously stated effect,

• namely, that the Hall current results in increased stability

to tearing modes when the plasma column rotates in one direc-

• tion and decreased stability when the column rotates in the

opposite direction. Figures 4-6 show that, in general, both

stability and instability are enhanced by rotating the column

faster in either direction, although above a critical value

of the wall position, A ’, the normalized growth rate, ~~
-

— 0

_ _  _ _ _  

-

— -  —-~~~----- — -~—
-
~~~~~~~~~ 

- 
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attains a maximum with respect to the normalized angular

velocity, 5, for rotations in one direction and a minimum

for rotations in the opposite direction.

Figures 4—6 also show that the growth rates are very

sensitive to the wall position, A ’, and that the plasma

column becomes more stable to tearing modes for outer wall

positions nearer to the plasma vacuum interface, i.e., for

smaller values of A ’. Furthermore, for sufficiently small

values of A ’, at a critical value of the normalized angular

velocity, 6, the tearing mode instability is quenched , i.e.,

1 _ o .

Figures 4-6 also show that for a given wall position 1

A ’, the stabilizing effect is more pronounced at lower values

of the number of particles, NL~ 
and higher ion temperatures, T.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~ -~- -
- 

— -5-- -~~~~~~~~~



- -

_

—52—

Conclusions:

1. Overestimates of the effect of Hall current and

rotation on the growth rate of tearing modes can be determined

from characteristics of the equilibrium at the neutral point

of the reversed magnetic field provided that the equilibrium

is known to be unstable to tearing modes.

2. The effect of the tearing mode is characterized by

the criteria of merit F which depends, to leading order, on

only two parameters q and K 2 . When q > 0 the Hall current

always enhances the stability of the plasma system to tearing

modes while values of q < 0 always result in reduced stability .

—2The parameter A is governed primarily by the position of the

outer wall and the value of the angular velocity .

3. For a given number of particles, the stabilizing

effect of the Hall current is enhanced by wall positions closer

to the plasma vacuum interface. For wall positions closer to

• the plasma than a critical value, the tearing mode instability

is quenched at a critical value of the angular velocity of the

column. For wall positions larger than this critical value,

the growth rate attains a minimum at one value of the angular

velocity for rotation in one direction, and attains a maximum

for another value of angular velocity for rotation in the

opposite direction.

4. For ~ givc~ wall posit ion , th~ sLabiii~ in~ effect

of the Hall current i c  more rronounced for fever numb~~rc cf

particles, NL~ 
and higher ion temperatures, T.
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X0D5
6 4 It tb.L.

0 .326 0 0 0

• .1 .307 — .099 .024 3.8x10 5

.2 .281 — .161 .119 l.87xl0 4

.3 .240 — .232 .337 5.4xl0 4

.4 .144 — .130 .860 l.l5xl0 3

Table 1

Validity of the Analysis.
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_- Figure Captions

Figure 1: Configuration of the plasma system.

Figure 2a: Analytical solution, F (Z), the resistive layer -

equations for a special case (numerical solution

coincides with the analytic solution within the

accuracy of the graph).

Figure 2b: Analytic solution, y(Z), of the inner equations for

a special case (numerical solution coincides with

analytic solution within the accuracy of the graph).

Figure 3: Dependence of the criteria of merit, F, on the

parameters A 2 and q governing the resistive layer.

Figure 4: Results of the analysis showing the effect of the

normalized growth rate on the normalized angular

velocity of the plasma 6, and a measure of the outer

wall position, A ’, for particle number, ML = io 16 .
The actual angular velocity of the plasma column is

noted on the abscissa.

Figure 5: Results of the analysis showing the effect of the

normalized grnwth rate on the normalized angular

velocity of the plasma 6, and a measure of the outer

wall position, A ’, for particle number, NL — 1017.

The actual angular velocity of the plasma column is

noted on the abscissa.
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1~
Figure 6: Results of the analysis showing the effect of the

normalized growth rate 1 on the normalized angular.Y
c—0

velocity of the plasma 6, and a measure of the outer

wall position, A ’, for particle number, ML =

The actual angular velocity of the plasma column is

noted on the abscissa.
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